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Linear Feedback Decoupling-Transfer 
Function Analysis 

MATHEUS L. J. HAUTUS AND MICHAEL HEYMANN 

Abstruct-The problem of  linear  system  decoupling is examined  based 
on recent  results  on  linear  feedback. New insight is obtained, through 
which resolution of the  decoupling problem is accomplished by calculations, 
performed directly  on  the  given  transfer  matrix. Computation of  the 
decoupling  compensators  follows by easy  constructions.  The problem of 
feedback  block  decoupling with  internal stability is also formulated and 
resolved. 

INTRODUCTION 

A N extensively  investigated problem in the system- 
theory literature for a period of over  two  decades is 

that of linear system decoupling or noninteracting control. 
For  a discussion of this literature we refer to [ 5 ]  and [8].  In 
the present paper a new approach is proposed, based on 
recent results on linear feedback  (see  [4]). It is  shown that 
the decoupling problem can be largely  resolved  using  ele- 
mentary calculations performed  directly on the given trans- 
fer matrix. 

Let R ( z )  be a real transfer matrix [which w7e always 
assume to be causal (proper)] and let Z = ( A ,  B, C ,  D) be a 
(continuous or discrete-time) realization of R( z), i.e., R (  z )  
= C( z1 -  A)- 'B  + D. The input u, state x, and  output y 
are assumed to be of dimensions m ,  n,  and r, respectively. 
The concept of decoupling can  be introduced as  follows. 
Let r,, ,rk be a given  set  of positive integers satisfying 
Cr, = r and let the output vector y be  decomposed into 
y = [I(, . . e ,  u;] ' ,  where y, is an ri-dimensional subvector. 
The transfer matrix  is  then  decomposed  accordingly as 
R ( z ) =  [ R ; ( r ) ; . - , R ~ ( z ) ] ' .  System Z is  said to be decou- 
pled (or, more specifically, ( r , > *  . - , r k )  decoupled), if there 
exist  positive integers m , ,  . . , mk satisfying C m i  = M ,  such 
that R has the block-diagonal form 

In order to decouple a given (nondecoupled) system, it 
may  be  desired to employ a suitable compensator ( F ,  G) of 
the form 

u = F ( z ) x + G ( z ) v  ( 1.2) 

where x is the state and u is a new input. Here F ( z )  and 
G(z) are transfer matrices. The resulting transfer matrix 
(from u toy) is 

R F , G = R . L F , G  (1.3) 

where 

and 

A compensator ( F ,  G) is  called 

matrix, 
1) pure (dynamic)  feedback, if G is static, i.e., a constant 

2)  (pure)  static feedback if both F and G are static, and 
3) a precompensator if F = 0. 
If  we want to emphasize that ( F ,  G) does not belong to 

any of these  special  categories we call ( F ,  G) a combined 
compensator. 

Finally, in order to avoid the trivial decoupling G = 0, 
one usually  imposes  some nontriviality, or admissibility, 
condition on ( F ,  G). Here we require that ( F ,  G) be adnzis- 
sible, through the condition 

where Ri ,  is r, X mi.  
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where  by rank we mean the rank over the field of rational 
functions (see  Section 11). (Sometimes  this  is  referred to as 
global rank because it is the rank at almost all points z . )  

The systemic interpretation of (1.6)  is  very  simple, at 
least  in the setting of discrete-time systems. It means that 
all  possible output trajectories that can be produced by the 
original system can also  be produced by the decoupled 
system. So, the condition can  be referred to as the output- 
trajectory-preservation condition. Elsewhere in literature, 
usually the weaker condition of output controllability pre- 
servation is imposed  (see  [9], [ll]). In [7] a condition 
similar  to our admissibility condition was  imposed. To 
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illustrate the distinction between the two conditions con- 
sider the following  example: 

Suppose we want a (2,2)-decoupled  system. It will be an 
easy consequence of Theorem 2.1 below that admissible 
decoupling is not possible (see Example  2.3).  Decoupling 
with output-controllability preservation, however,  is  possi- 
ble by the “pure” feedback 

f ‘ = O , G = [ O  1 0 0  0], 

which amounts to erasing the third column of R(z). 
An important question related to the problem of de- 

coupling is that of stability. Let % denote the reals, let ‘2 
denote the field of complex numbers, and let ‘2- be an 
arbitrary subset of C? satisfying C?- n % f 9. We call the set 
e- a stability set and say that a rational function (vector, 
matrix) is stable (with  respect to e-) if it has no poles in 
e+, where C?+ is the complement of C?- in e. When de- 
coupling of a given transfer matrix is  possible, we can ask 
further whether this decoupling can be achieved in a stable 
way.  Two important questions regarding stability are as 
follows. 1) Does there exist an admissible  combined  com- 
pensator ( F , G )  such that both G(z) and  R,,,(z) are 
stable transfer matrices and  RF,G is decoupled? 2) Does 
there exist an admissible pure feedback compensator ( F ,  G )  
(with G static), such that RF,G is decoupled and R 2,  F ,  : = 
R; L ,  is stable? 

11. STATEMENT OF THE MAIN RESULTS 

In this section we state the main results of this paper. 
We shall elucidate the theorems by simple  examples. The 
proofs as well as the related mathematical developments 
are given in the ensuing sections.  Basically, it will be seen 
that the conditions for the solvability of the decoupling 
problem in its various versions are strongly  related to 
various kinds and degrees of “independence” of the row 
blocks of the transfer matrix R of the system. The required 
concepts and terminology will be introduced as we pro- 
ceed. 

We denote by a ( z )  the field of rational functions and 
consider matrices and vector  spaces  over  this  field,  which 
will be referred to, respectively, as %( z)-matrices and 
%(z)-linear spaces. If uI(z); --,u,(z) are vectors in an 
% (z)-linear space S, they are called % (z)-( linearly) inde- 
pendent if the only  set of scalars yI,  - , yk E %( z) for 
which Z~=lyi(z)ui(z)=O is the set y , = * * *  =yk=O. If 
SI; -,Sk are nonzero (%(z)-linear) subspaces of S, they 
are called independent (or more explicitly ’%( z)-indepen- 
dent) if every k-tuple u l ,  - , uk of nonzero  vectors  satisfy- 
ing ui E Si (i = 1,. . -, k)  is %( z)-independent, or equiva- 

lently, if every u E 5 ,  + . - + S, has a uaique represen- 
ta t ionof theformu=u,+   +ukWithuiESi , i= l , . . . ,  
k. If R is an %(z)-matrix, we speak of its rank as  its 
% (z)-rank, that is, the dimension of the csl (z)-linear space 
spanned by its rows (or columns). 

We  now consider the ( r l ,  - . - , r,)-decoupling problem 
and for each i = 1, - . . , k we let Si denote the  Q(z)-linear 
space of row  vectors spanned by the rows of the block 
Ri(z) of R(z) (see Section I). We  assume that the problem 
is nondegenerate, i.e., none of the Si’s is  zero. 

Theorem 2.1: There exists an admissible precompensator 
G(  z) such that Ro, = R . G is decoupled i f  and only i f  
S, , . . - , S, are %( z)-independent. 

The proof of Theorem 2.1 is given in Section 111. 
An effective procedure for checking the %(z)-indepen- 

dence of the spaces SI,.  - ,S, can be formulated as fol- 
lows. From the rows of R,(z) construct a basis ui1; -,uj!, 
for Si. Then S l , - - - ,Sk  are independent if and only d 
ul1; . - , u l q , , -  . - ,ukq ,  are independent. 

Example 2.2: Let r = 4, rl = 2, r2 = 2, and 

The rows  of 

R , ( z )=  [’  z - l  z -2  ‘-I]  
Z-2  

are obviously %( z)-dependent, and hence uI1 = [ 1 z-’ 
z-I] is a basis for S,. The rows u , ~  and u22 of 

are %(z)-independent  and form a basis for 5,. Clearly, the 
rows u I 1 ,   u , ~ ,  and uZ are  %(z)-independent  and  it follows 
that (2,2)-decoupling by admissible precompensation is 
possible. 

0 
Example 2.3: Consider the decoupling  example  given in 

Section I [see  (1.7)]. It is easily  seen that (O,O, 1) E S I  n S,, 
so that decoupling is impossible. 

An explicit construction of the decoupling precompensa- 
tor G(z) will follow  immediately from the proof of Theo- 
rem  2.1 in Section 111. 

Next we turn to the issue of stability. If R can be 
decoupled  by precompensation, then obviously one can 
always  choose G to be stable, so that Ro,G = R .  G is also 
stable. However, if R is not stable then the stability of R , ,  
is in itself insufficient. To achieve stability in the sense as 
discussed in Section I we need to resort to feedback, and 
hence to combined compensation. We then require that 
both RF, I and G be stable. The following theorem, the 
simple proof of which  is also given in Section 111, states 
that when  using  combined compensation, the decoupling 
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problem and the stability question are separate (and inde- 
pepdent) issues. 

Theorem 2.4: There  exists  a combined compensator ( F ,  G) 
such that  R F, is decoupled while RF, I and G are both stable 
if and only if the  following conditions both hold. 

I )  The  system  can be  decoupled by precompensation. 
2) The  system can be stabilized by pure  state  feedback. 
While the present paper deals explicitly  with state feed- 

back, it should be remarked that under suitable conditions 
Theorem 2.4 generalizes to  output feedback  as well. 

We  now turn to the more difficult (and in the authors' 
view  more interesting) problem of  decoupling  by pure state 
feedback. A complete solution of this problem can  be  given 
only for injective systems,  i.e.,  systems in which the transfer 
matrix is  left  invertible. To derive the conditions for 
solvability we have to introduce a further and somewhat 
stronger condition of row independence which  is  called 
proper independence. 

Let u be a nonzero rational vector and let u = u , ~ - ' o  + 
uta+ Iz-'o-l + . - be its expansion in powers of 2-I with 
ut0 being the first nonzero coefficient vector. This expan- 
sion can  be obtained for example  by a long-division  proce- 
dure. We call to the order of u (denoted ord u )  and u, is 
called the leading coefficient (vector) of u (notation ut0 = Ei). 
Ifu=Owedefineordu:=coandEi:=O. 

Usipg the above notation and terminology we can define 
proper independence of vectors and subspaces. 

Let S be an Q (z)-linear space. Then u,,. . . , uk E S are 
called properly independent if f i l ,  - - , Eik are linearly inde- 
pendent (or sindependent). If SI, * * , S, are nonzero 
%( z)-subspaces of S, they are called properly independent 
if  every k-tuple of nonzero  vectors u,, . . , uk satisfying 
ui E Si are properly independent. (Further details on proper 
independence can be found in [2] and [3].) 

For the formulation of our main results we need one 
more concept (see [4]). We call a rational matrix bicausal if 
it is causal and it has a causal inverse. 

Theorem 2.5: Consider the ( r , ;  - ,r,)-decoupling problem 
for an  injective  transfer  matrix R ( z )  and let Si denote the 
%(z)-linear space spanned by the rows of R , ( z ) .  Then  the 
following  statements are equivalent. 

i) S I ,  - . . , S k  are properly independent (in S : = SI  + . 
ii) There  exists  an admissible static  state  feedback com- 

pensator (F, G) such that R , ,  is decoupled. 
iii) n e r e  exists  an admissible dynamic  state  feedback 

compensator (F(z), G) such that  R F, , is decoupled. 
iv) There  exists  a bicausal precompensator L(z) such that 

R o , L  = RL is decoupled. 
Theorem  2.5 is proved in Section  IV. The equivalence 

ii) * iii) is not in contradiction with the work  of Morse and 
Wonham [8], since the concept of extended decoupling is 
equivalent to combined decoupling, and hence as far as 
existence  is concerned, to decoupling by precompensation. 
A remarkable consequence of Theorem 2.5 is the fact that 
in the injective  case the solvability condition for dynamic 
as well  as static feedback  decoupling is independent of the 
particular realization and depends only upon the transfer 

S k ) .  

matrix!  These results are, however, no longer  valid in the 
noninjective case.  While the proper independence condi- 
tion still remains sufficient, it is no longer  necessary if the 
system transfer matrix is not injective. Indeed, it may 
happen that feedback decoupling is  possible in some  reali- 
zations but not in others. We discuss  this further in Section 
V. 

In order to effectively  check the proper-independence 
condition one has to construct a proper basis for each S, 
based on the rows of R , ( z )  (see, e.g., [3, Sect. 41). Then 
S . , S k  will be properly independent if and only if the 
union of these  bases  is properly independent. This will be 
described in Section  VII. For simple  examples, the proper 
independence can often be  checked by inspection. 

Example 2.6: Let r = 3, r1 = 2, r2 = 1, and let 

which  is nonsingular, and hence  clearly  injective. The rows 
u , ~  = [ I  z - I  z P 2 ]  and uI2 = [ z -I  z - ~  zP4] are %(z)-inde- 
pendent and form a basis for SI. But  these  vectors are  not 
properly independent since a,, = Ei,, = [l, 0, 01. A proper 
basis for S is obtained by  taking,  say, u1 I = uI and 
v I 2  = u I I  - Z U , ~  = [0, 0, z - ,  - z - ~ ] .  Furthermore, u21 = 

[z-,, z - l ,  z - ~ ]  is a proper basis for S, and the vectors 
8,,, cl2, Q,, are independent. Hence, SI  and $5, are prop- 
erly independent and feedback  decoupling is possible. 
However,  while diagonal decoupling of the same transfer 
matrix can  be  accomplished by admissible precompensa- 
tion, it cannot be done by pure feedback. 

0 
Next, we discuss the problem of feedback decoupling 

with stability. We restrict ourselves to injective  systems. 
Results on the noninjective  case are mentioned in Section 
VI. 

First, we  have the following result, which states that if 
feedback decoupling is possible at all, it can also be 
accomplished in such a way that the resultant (closed-loop) 
transfer matrix is stable. 

Proposition 2.7: Let R(z) be an  injective  transfer matrix 
satisfying one (and hence all) of the conditions of Theorem 
2.5. Then there exists  an admissible static  feedback com- 
pensator (F, G) such that R F, is decoupled and stable. 

Here we assume that a stability set e- is given as 
described in Section  I. Proposition 2.7 is  proved in Section 
VI below. 

While Proposition 2.7  gives conditions for feedback de- 
coupling with (external) closed-loop stability, it does not 
ensure internal stability in the sense as discussed in Section 
I.  Clearly, a necessary condition for feedback  decoupling 
with internal stability is that the system  be  feedback stabi- 
lizable. The condition for the existence of a decoupling 
feedback  with internal stability is  most  easily  expressed if 
the original system  is stable. The general  case,  with no a 
priori stability, is  given in Section  VI. We now  need one 
further concept of  row independence which  is  somewhat 



826 IEEE TRANSACTIONS  ON  AUTOMATIC CONTROL, VOL. AC-28, NO. 8. AUGUST 1983 

analogous to proper independence. To this end, it is  easily 
seen that the concept of proper independence could  be 
reformulated as follows.  Let SI; . - .Sk be '3. (z)-linear 
spaces (i.e.,  spaces of rational vectors).  Then SI; . - ,Sk are 
properly independent provided a vector u = u1 + - + U, 
with ui E Si, i = 1; . - , k ,  is proper only if u, are proper for 

Let S . . , S, be '3. (z)-linear spaces.  Then 5 . . , S, are 
called stably independent if for u = uI  + . . . + uk.   u,  E 3,. u 
stable implies that u, is stable for i = 1 , .  . . , k. Similarly, a 
set of rational vectors u l (  z); . . ,u,(z) is  called stably inde- 
pendent if and only if the corresponding linear spans, i.e., 
the spaces  generated  by the vectors, are stably indepen- 
dent. An alternate characterization of stable independence 
is  given  by  the  following. 

Lemma 2.8: L e t  u I ;  . . , uk be stable rational  vectors hav- 
ing no zeros in e-. Then u I ;  . . , uk are stably independent if 
and only if uI(a); - ,uk(a)  are linearly independent for 
every a E e+. 

Proof: Suppose that u,( a), . . , uk(  a) are linearly de- 
pendent for some a € e+. Then there are numbers h l , .  . . , h k  

not all  zero  such that hlul (a)+  . . . + h,u,(a) = 0. Hence, 
if  we define v ( z )  = (z - a)-l(X,u,(z)+ . * + h k # k ( Z ) ) ,  

then v ( z )  is stable. [If u has complex  coefficients we take 
Rev(z) or Imv(z).] If u l . * -  - ,uk  are stably independent, 
then (z - a)- 'h ,u , ( z )  must  be stable. Hence. u, (a)  = 0 if 
A, 0, contradicting our assumption. 

Conversely,  let u = pl(z)ul(z)+ + p,(z)u,(z) be 
stable and suppose that, say, p I (z) u1 (z) is not stable. Since 
u I  is stable by assumption, we conclude that p l ( z )  is not 
stable and has a pole at some a E e+. Let Y be the minimal 
integer such that q j ( z )  : = (z - a) 'pj(z)  has no pole at 
z = a for j = 1, - . , k .  Then there exists at least one j such 

- a) 'u(z ) ,  it  follows that q,(a)u,(a)+ . . . + qk((Y)uk((Y) 
= 0 contradicting the linear independence of u l (  a), . . . , 
uk(a) -  

0 
We remark, that for every CR. (z)-linear space &. one can 

construct a stably independent basis. If one does so with 
the spaces SI , .  * + ,Sk ,  then  they are stably independent if 
and only if the union of stably independent bases  for 
SI; . - ,Sk  is a stably independent basis  for S, + . . . + 5,. 

Theorem 2.9: Let R(z) be a stable injective transfer matrix 
decomposed as in Section I and let S I  denote the space of 
rational  row  vectors  generated by  the rows of Ri(z). Suppose 
that R satisfies the equivalent  conditions of Theorem 2.5. 
Then there exists an  admissible  decoupling feedback (F,G)  
such that Rs.  F,G is stable if and  on& if SI: . . ,s, are stably 
independent. 

In Section VI, Theorem 2.9, as well as also a more 
general  result  where R is not supposed to be stable, are 
proved.  Also  some  results on noninjective  systems are 
given. In Section VI1 it will  be  shown how this condition 
can effectively  be  checked and how the desired  feedback  is 
constructed. 

Example 2.10: Let e- : = { z E e : IzI l} and let rl = 1, 
r2 = 2, and 

all i =  1;. - ,k .  

that q,(a) * 0. since  ql(Z)UI(Z)+ * * * + qk(Z)Uk(t)= (Z 

2 ~ - 4   Z - 2  

z 2 + 2  
R(z)=,  z1 z + 4  2 + 2  1 1 6 1 .  

The denominator z2 does not influence the  row  spaces SI  
and Os2, and could  be  replaced  by any other polynomial of 
degree at least one whose  zeros are in e-. The row vector 
u I 1  = [l 2 11 is a stably independent (or stable) proper 
basis for 5,. The vectors u , ~  = [z + 4 z + 2 z + 61 and u2, 
= [ z + 1 z z + 21 are not properly independent. Therefore, 
we replace  them  by u , ~  - u,,, u,,, i.e.,  by v , ~  = [3 2 41 and 
v,, = [ z + 1 z z + 21. Now the set u1 I ,  v ,~ ,  v2, is properly 
independent, and hence so are S I  and S, and state feed- 
back  decoupling  is  possible.  But, v , ~  and v,, are not stably 
independent because of Lemma 2.8. for 

3 2  
z + l  z z + 2  4 1  

does not have full rank for z = 2 6 e.. Thus, we have to 
construct a stable basis for S,. We have v , ~  - 021 = [ z - 2 
z - 2 2 - 21. Hence, the vectors wZl = u21 and y, = (z - 
2) ~ '(uZ2 - v Z l )  = (1 1 1) form a stable basis for S,. Since 
u I  w , ~ ,  w,, are constant and linearly independent they are 
clearly  also stably independent. Hence, the system can be 
decoupled  such that the resulting I/S map is stable. Had 
the first  row of R been  replaced  by v I 1  = [2z - 2  z - 1 
z + 11, then proper independence of 5, and S, would still 
hold, but stable independence would fail since  while v I I is 
a stable basis  for S the set v 1  wZl, w,, is  linearly depen- 
dent for z = 2. 

0 
We conclude  this  section  with the following observation. 

It follows  from  Lemma  2.8 and Theorem  2.10 that when 
feedback  decoupling  is  possible, this can always  be  achieved 
stably if the system  is minimum  phase, i.e., if R(z) has full 
row rank for all (YE e-. That the minimum phase condi- 
tion, however,  is not necessary  is  seen  from the foregoing 
example. 

111. DECOUPLING BY PRECOMPENSATION AND 

COMBINED COMPENSATION 

This section  is  devoted to the proofs of Theorems 2.1 
and 2.4 and since the proofs are essentially constructive 
they  also indicate procedures for actual synthesis of decou- 
pling compensators. Further discussion of compensator 
construction is  given  in  Section VII. 

Proof 3.1 of Theorem 2.1: Let Ri(z), i = 1;. .,k denote 
the row  blocks of R(z) and for  each i ,  let q, : = rank R , (  z). 
Then there  exists an r, X r, nonsingular rational matrix 

( z )  such that 

R, = v[ ti] 
where  the  rows of R ,  form a basis for Si, the row span of 
R,, and where the zero  matrix has r, - qi rows and may be 
empty. If the spaces S . * ,  S, are 3. (2)-independent, then 
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f i l  

has independent  rows,  and  hence has a right inverse G(z). 
It follows that 

- 
VI 

RG = 

0 
- 

0 

' k  

R' 
0 

' k  

0 

1 
is decoupled. Here I j  is the qj X q, identity matrix. Also, 
since VI,. . - , vk are nonsingular, we have 

k 
rankRG=  q,>rankR>rankRG 

j = 1  

and hence rank RG = rank R. It follows that if G is causal 
it is  admissible.  But if G  itself is not causal, then for a 
sufficiently large integer I, the matrix z-'G  is causal, and 
hence admissible. 

Conversely,  assume that G(z) is an admissible decou- 
pling precompensator for R(z). Let S denote the row span 
of R  and for each i = 1,. . , k let si denote the row span of 
Ri(z). Then G induces a map 

r : S + S G : u - u G .  

The admissibility of G  implies that dims = dimSG, hence 
r is injective (i.e.,  one-one).  Since  RG  is decoupled, the 
spaces SiG  are 9, (z)-independent. Therefore, if u ,  + . . . + 
U, = 0, ui E Si, then T u ,  + . - . + r u ,  = 0, Tu ,  E SiG  and 
r u i  = 0 for i = 1,. . , k.  By the injectivity of r it follows 
that ui = 0, and hence SI, .  . e ,  5,  are '3, (z)-independent. 

0 

In the  above construction the number of inputs  in the 
ith block equals qi so that the total number of input 
variables in the decoupled  system  will equal , q, = 

rank R (the  latter equality holding because of the indepen- 
dence condition). 

Proof 3.2 of Theorem 2.4: If there exists  an admissible 
decoupling  precompensator G, it is  always possible to find 
a stable admissible decoupling  precompensator  by multi- 

*G 

plying G by a suitable rational function. Indeed, G(z) can 
always  be written in the formp(z)-'P(z),  wherep(z) is a 
polynomial  and P( z) is a polynomial matrix. Choosing any 
polynomial s ( z )  with zeros in E!- and of the same degree as 
p ( z ) ,  the matrix s(z)-'P(z)=  [s(z)-'p(z)]G(z) is a sta- 
ble admissible decoupling  compensator. 

If the original system  is not stable but stabilizable by 
pure feedback, we first apply stabilizing feedback F(z) 
thus obtaining the transfer matrix RF, I = R ( I  - FRs)-'. 
Since the block  independence condition of Theorem 2.1 is 
unaffected by the nonsingular factor ( I  - FR,)-', the new 
system will admit an admissible decoupling  precompensa- 
tor if and  only if the original one does. This completes the 
proof. 

0 

IV. STATE FEEDBACK DECOUPLING OF INJECTIVE 
SYSTEMS 

In the present section we prove  Theorem 2.5.  Let L ( z )  
be a causal m X m matrix with  expansion Lo + L,z-' + . 
in powers of z- '. It is  easily  verified that L( z) is bicausal if 
and only if Lo is nonsingular. In Section I we  saw that if 
state feedback F( z )  is applied to a system, then the equiva- 
lent precompensation  matrix 

L ~ , ~  = ( I -  FRJ' 

is bicausal. In [4] the converse question was investigated 
when a bicausal precompensator L ( z )  can equivalently be 
represented as static state feedback. That is, when do there 
exist constant matrices F, G with  G nonsingular such that 
L = L , ,  = ( I  - FR,)-'G.  The following characterization 
given in [4, Theorem 5.71 will be of fundamental  impor- 
tance in our further investigations. (The  theorem  is rewrit- 
ten  in  somewhat different terminology.) 

Theorem 4.1: Given  an I / S  transfer  matrix RJz) and a 
rational  matrix L(z), there  exist  a constant matrix F and a 
constant nonsingular matrix G such that L = L , ,  = (I  - 
FR,)-'G if and only if L is bicausal and for every poly- 
nomial vector u(zj such that R,u is polynomial,  the  vector 
L- u  is  polynomial  as well. 

While the result in [4] was  proved for reachable I/S 
maps (transfer matrices), it is true in general as  can be 
easily  seen  by restricting the state space to the reachable 
part.  The necessity of the condition is rather obvious  since 

We also need the first part of the following  lemma.  (The 

Lemma 4.2: Let R(z) be a causal rational  r X m  matrix. 
i )  There  exists  a nonsingular polynomial  matrix P(z) such 

LF, = G- ' ( I  - FR,). 

second part will be used in Section VI.) 

that 

where the rows of M(z) have order zero and are properly 
independent.  The  number of rows of M(z) equals q :  = 

rank R(z). 
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ii)  If a is any  real number,  then  the  matrix  P(z) of i) can R thus obtaining the following formula 
be  selected  such that P-  '(z)[I 01' has  no  poles  except possi- - 
bly at z = a. Here  I is the q X q identity matrix. MO 

Proof: Clearly, the set P of proper (causal) rational 

Therefore, R ( z )  has a modified Hermite decomposition 
functions is a principal ideal domain (see also [3, Sect. 61). [; ...  O][ R1]= 

0 ; 
(see [11> 

' k  Rk  M k  

, o -  
R ( z )  = II[ F,O]V The rows of M, form a proper basis for Si and the proper 

independence of s . * , S k  implies that the  rows of M :  = 
where is an x Permutation matrix, v is an x m [ M ; ,  . . . , ~ ; ] f  are properly independent as well (see Lemma 
matrix invertible over P,  that is, Vis bicausal, and where F 4-31. since R is injective, so also is M ,  and since the rows of 
is an x 4 lower matrix which has nomero M have order zero. M must be bicausal.  Let L denote the 
diagonal elements. If a E Ck is any element, then the ideals inverse of M .  ne* 
of P can  be written in the form ( z  - a)-"P for Y = 1,2. . . . 
It follows that we can  choose the diagonal elements of F to 
be of the form ( z  - a ) - " ~  and the elements of the i th  row 
of F a s ( t - a ) - " a p . . ( z )  1J ( i = l , - - . , q ; j = l ; . . , i )  wherep,, fJ; 0 
are polynomials. It follows that F can be written as F = 
[ F;, F;]' where Fl is nonsingular and F; = : Q ,  is  poly- 
nomial. Thus we obtain 0 P; I 

~~ ~~ 

provided Q2 and Q3 are selected to satisfy Q2FI + Q ,  F2 = 0, 
i.e., Q2 = - Q3FzQl. It is easily  seen that Q, and Q3 can be 
chosen to  be  polynomial and such that Q, is nonsingular. 
The proof of the lemma  is  completed upon setting 

P : = [  Q l  "I.-' " = [ I  O]V. 
Q2 (23 

By construction, the matrix P -  I[ I 01' = [ Fi, F;]' has  poles 
only at z = a. 

0 
Finally, we shall  make  use of the following. 
Lemma 4.3: Let S,; - , S k  be properly  independent spaces 

of row  oectors  and for each i = 1, - . . , k,  let M i l , .  . . , uiq, be  a 
proper basis for Si. Then the vectors u l l ; - ~ , u I q , ,  u ? ~ ; . . ,  

Proof: Observe  first that if SI,. * ,Sk are properly 
independent, so is  every subset. Suppose that u1 * . , 
ulql; * - , u k q k  are not properly independent. Without loss of 
generahty we assume that the ulJ's have order 0. Then 
there exist  real numbers ail, not all zero,  such that 

' k q ,  are properly  independent. 

k q, 

ai;fiiJ = 0. 
i = l  ] = I  

For each i = 1 , .  . . , k define u, E Si by u, : = ai,yij and 
let J denote the set of indexes  for  which Ia,,uij * 0. 
Then J * 0 and Ej E Gj = 0, contradicting the proper inde- 
pendence of the set { 5,); E J .  

0 
Proof of Theorem 2.5: 
i) = ii): We apply Lemma  4.2 to every  block  row R ,  of 

I1 
0 

I2 
0 

I k  

0 

is decoupled and L constitutes an admissible bicausal 
precompensator for R (compare the proof of Theorem 2.1). 
It remains to be shown that L can be realized by static 
state feedback. To this end we apply Theorem 4.1. It 
suffices to show that L- Iu is a polynomial vector whenever 
u as well as R,u are polynomial.  Since R = CR,  + D, and 
hence 

1 Ik '1 

and the Pi's are polynomial, the result  follows  immediately. 
ii) =$ iii): is  trivial. 
iii) * iv): If there exists an admissible decoupling (pure, 

dynamic)  feedback ( F ,   G ) ,  then R ,, = RL,, is decoupled 
and ( I  - FR,)-'G is an admissible decoupling pre- 
compensator. Since rank R = m because of the injectivity 
condition, the admissibility of L ,  implies that rank G = m. 
Thus, there  exists a column  selection  matrix E such that 
GE is square and nonsingular and R F ,  G E  is still decoupled. 
We can define L = ( I  - FR,)-'GE, which  is  bicausal. 

iv) * i): Let.S denote the row span of R and define the 
map r : S + S L  : u * u L .  The spaces S,L are properly in- 
dependent in view  of the fact that RL is decoupled. We 
claim that the 5, are also properly independent. Indeed, if 
u, E S,, u, * 0, say u, = viL- ' ,  then G, = 6,L; I ,  where Lo is 
the coefficient of Zo in the expansion of L in powers of 
z I ,  and hence nonsingular. Since 6,, . . . ,6k are indepen- - 
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dent, it follows that . - , C k  are also independent and Example 5.4: Let r = 2, rl = r, = 1. The transfer matrix 
u , ,  , uk are properly independent. 

0 
It follows  from the foregoing, that, in the construction of 

a decoupling feedback, it may  be  assumed that G is square, is injective.  Since the rows are not properly independent, 
and hence the number Of inputs Of the new system equals state feedback decoupling in an arbitraly realization is not 
the number Of inputs Of the Original system. This is, Of possible according to Theorem 2.5. Consider now transfer 
course, a consequence of the injectivity condition of R. matrix 

v. DECOUPLING OF NONINJECTIVE SYSTEMS 

The problem of decoupling of noninjective  systems  by 
feedback compensation is not completely  resolved and our 
main result in this  case rests on the sufficiency of the 
proper independence condition of Theorem 2.5. In particu- 
lar, we have the following. 

Theorem 5.1: If  R(z) is a  (not necessarily injective) trans- 
fer  matrix and S,, . . . , S,, defined as in  Theorem 2.5  are 
properly  independent,  then there exists an admissible static 
feedback  compensator (F, G) such that R F,G is decoupled. 

Proof: We construct matrices P I ;  . - , P k  and M i ;  * a ,  

Mk, M as in the proof of Theorem 2.5 (see Section IV). If R 
is not injective, then the matrix M is not bicausal because  it 
is not square.  However, it follows  from the proper indepen- 
dence of the rows of M that Mu has full row rank ( M u  
being defined by the expansion M ( z )  = Mu + M,z-  + 

e e . ). Thus, there exists a constant matrix K such that Mo K 
is square and nonsingular. Consequently, the transfer ma- 
trix R K  is injective and satisfies the proper-independence 
condition. By Theorem 2.5 an admissible feedback ( F ,  G) 
exists  decoupling RK. But, (RK),, = R K F ,  KG and 
rank RK = rank R,  so that (KF,  KG) is an admissible de- 
coupling feedback compensator for R .  

0 
The following  generalization  is  obvious from the previ- 

ous construction. 
Theorem 5.2: If there exists  a  constant  matrix K such that 

rank RK = rank  R  and such that the row spaces S,K; . . , 
S, K are properly  independent,  then  the  system can  be  decou- 
pled by an  admissible state feedback. 

Example 5.3: Let r = 2, r,  = r, = 1, and let 

R (  z )  = 
1 z - ,  
1 2 + z - '  z- l  

The rows R,  = [l z - '  z P 2 ]  and R ,  = [l 2+ z- '   z - '1  are 
properly independent and, hence, the system  can  be  decou- 
pled by feedback  by  Theorem  5.1. 

17 
We remark  at  this point that in all our theorems  re- 

garding state feedback  decoupling, no reference was made 
to the particular state space on hand. Consequently, the 
theorems dealt with the possibility of decoupling by feed- 
back  in any possible realization. Thus, even the condition 
of Theorem 5.2 is not necessary for the existence of an 
admissible decoupling feedback, and the latter may  be 
realization-dependent as illustrated in the following  exam- 
ple. 

If Z, = ( A , ,  B1,C,, D )  is a realization of R,,  then R ,  is 
realized  by E, = ( A 2 ,  B2,C2, D,), where A , :  = A , ,  B,:  = 
[B,,O], C,: =C,,D,: =[D,,O]. Obviously, Z, cannot be 
decoupled  by  feedback  since 2, cannot. However, we shall 
demonstrate that there exist other realizations of R, that 
can be decoupled by feedback. To this end, note that 
R2LG, = z- '12,  where 

Since the matrix L is  bicausal, it follows  (see  [4,  Theorem 
5.131) that there exists a realization %2 of R ,  in which R ,  L 
can be obtained by static state feedback ( F ,  Go).  But then, 
letting G: = GoGl,we have R2.F,G = z - ' I ,  which  is  decou- 
pled having  used an admissible static state feedback in 2,. 

0 
The question  whether the existence of a decoupling 

dynamic state feedback  implies the existence of a decou- 
pling static feedback  remains open. 

VI. STABLE DECOUPLING FEEDBACK 

The proof of Proposition 2.7 is obtained by taking in the 
proof of Theorem 2.5 as  given in Section IV the matrices 
PI, .  . . , Pk such that P; '[ Ii,O]' has no poles  except at a 
given a: E e- n a. This is  possible  because of Lemma 4.2 
ii) . 

In Section  I1 it was already noted that stabilizability of 
the system  is a necessary condition for the existence of 
stable decoupling. It is no loss of generality to assume that 
the system  is actually reachable. If not, we can restrict our 
attention to its reachable part. The nonreachable part does 
not influence the transfer matrix and therefore is of no 
importance to the  decoupling  problem. Also, if the original 
system  is stabilizable the nonreachable part will  be stable 
and remains so if feedback  is applied. 

We turn now to some questions of representation of 
reachable realizations of a rational transfer matrix. In [4] it 
was shown that to each reachable realization 2 of a ra- 
tional transfer matrix R ( z )  there corresponds a pair 
( P ( z ) ,  Q ( z ) )  of polynomial matrices with Q nonsingular 
such that 

R ( z )  = P ( z ) Q ( z ) - ' .  

(In [4]  only strictly causal transfer matrices were con- 
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sidered, but the present extension is obvious.) The pair 
( P ,  Q )  is  uniquely determined by Z up  to right multiplica- 
tion (of each matrix) by a unimodular polynomial  matrix. 
A possible matrix pair ( P ,  Q )  corresponding to  a reachable 
realization Z = ( A ,   B ,  C ,  D )  can be constructed explicitly 
by the construction of a pair of right coprime matrices 
( S ,  Q )  satisfying 

R , ( Z )  = ( z ~  - A ) - ’ B  = s ( Z ) ~ - l ( ~ >  

and by  defining P : = CS + DQ. 
According to [4, Theorem 4.101,  we have the following 

result. 
Theorem 6.1: Given  the  system Z = (A, B, C, 0) and the 

associated matrix  pair (P ,  Q), a proper  rational matrix R(z) 
can  be  realized  by a  system 2 = (A,   B,  c, D), with the  same 
state space as Z and the  same matrices A and B if and  only if 
R Q  = : P is  a  polynomial  matrix. 

The I/S map (transfer matrix) R , ( z )  = ( z l  - A ) - ’ B  is 
shared by both C and 2 and we say that R ,  is a semireali- 
zation of both R and 3. 

According to (1.4) we have 

L ~ , ~  = Q ( Q  + ~ 1 - l ~  (6.2) 

where N :  = - FS. Conversely, it follows  from [4, Theorem 
4.101, that if N is any polynomial  matrix  such that NQ-  ’ is 
strictly proper, there exists a constant matrix F such that 
N = - FS. Moreover, 

R ~ , ~  = P ( Q  + N ) - ’ G .  (6.3) 

We shall  need one more  technical  result  similar  to  Lemma 
4.2. 

Lemma 6.4: Let  P(z) be a po(ynomia1 matrix.  Then  P(z) 
can  be  represented as P = U-V where U is a nonsingular 
polynomial  matrix such that U-’ is proper and V is  a 
polynomial  matrix of the form V = [Vi, O]‘, where V, is right 
unimodular (i.e., such that V, W, = I for some  polynomial 
matrix W,). 

Proof: Let P = II[ F, 01 W be a modified Hennite form 
of P over the polynomial  ring (X[ z ]  (see [ 11 and compare 
the proof of Lemma 4.2). The matrix F can be  decomposed 
into F = [ F;, F;]‘, where F, is lower triangular and in each 
row the diagonal elements are of the highest  degree. Split- 
ting W = [ Vi, Vi]’ in correspondence with the decomposi- 
tion [ F,O], we obtain 

where in the right-hand side term, F3 may be any poly- 
nomial matrix and V2 has been  replaced by zero. In partic- 
ular, we choose F3 to be a nonsingular diagonal matrix 
with,  on the diagonal, polynomials of degree  larger than 
the degrees of the corresponding rows of F2. It follows that 
we  may write 

where F, is a diagonal matrix containing nonzero poly- 
nomials on the diagonal and F2 is a proper lower triangular 
matrix with unity elements on the diagonal. Hence, E- ’ is 
proper. Therefore, we may  define 

u:=n[  Fl  F2  F3 0 1, E = [  71 
and since W is unimodular, it follows that VI is right 
unimodular. 

0 
We are now in  a position to formulate and prove our 

main  result. 
Theorem 6.5: Let the  pair (P,  Q) be associated  with a 

reachable realization of R .  Decompose R as in Section  I  and 
for each i = I ; - - , k ,  define PI:  = R,Q. Let TI denote the 
%(z)-Iinear space  generated  by the rows of  Pi. Suppose that 
R is injective and  can  be  decoupled by  pure  state  feedback. 
Then there exists  an admissible  decoupling feedback (F, G) 
such that Rs-  F , G  is stable if and  only if 9, :. . . ,Tk are  stably 
independent  spaces. 

Proof: 
i) Necessity: Let ui E Ti and let u = uI  + . . + Uk. We 

need to show that if stable dewupling is possible, then the 
stability of u implies that each ui is also stable. There exist 
rational row  vectors vi such that ui = viPi. If  we define the 
row  vector v : = [ u,; . - , t’k], then u = vP. Now (6.2) and 
(6.3) imply that there exist a polynomial matrix N and  a 
constant matrix G such that NQ-  is strictly proper, Rs, 
= S ( Q  + N)-’G is stable, and M :  = RF,G = P ( Q  + N)-‘G 
is decoupled.  Since S has no nontrivial right  divisors it 
follows  at  once that S and Q + N are right  coprime. Hence, 
the stability of R,, F , G  implies that ( Q  + N ) - ’  is stable and 
v M  = v P ( Q  + N ) -  ‘G is stable.  But v M  = 

[v i  M, , ,  v2MZ2; . ‘9v)kMkk], where we have  used the fact 
that M is decoupled. Hence, v,Mii is stable for i = 1; . -,k, 
and consequently u, = viPl = u,M,G- ‘ ( Q  + N )  is stable. 
Here Mi is the ith block  row of M .  

ii) Sufficiency: Applying  Lemma 6.4 to each  block  row 
PI of P gives 

and for each i ,  the matrix y. forms a basis for the row 
space TI. Since P is  injective and the row  spaces ’3’; are 
independent, it  follows that Y :  = [Vi; . a ,  VL]’ is a nonsin- 
gular m X m matrix. We claim that Y-  ’ is stable. If not, 
there exists z ,  E e+ such that V(z,)  is singular with a 
nonzero left annihilator c, and we can write c V ( z )  = ( z  - 
z , ) p ( z )  for some  polynomial  vector p ( z ) .  Now, we have 
p ( z )  = p l ( z ) +  . . . + p k ( z ) ,  where p i ( z ) :  = (z  - z , ) - I c i ~  
and where c, is  defined  by the appropriate decomposition 
c = [c , ;  . . ,ck]. Hence, p i  E 9; and since p is stable (being a 
polynomial) it  follows  from the stable independence condi- 
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tion that pi is stable for i = 1; . 0 ,  k .  Hence, c,y(  z o )  = 0. 
Since y is  right unimodular, this  implies that c, = 0 for 
i = 1, . a ,  k ,  contradicting our assumption. We observe that 
R , : = VQ- is proper, since FQ-' = V-IPQ- ' is proper 
(V-' being proper by  Lemma 6.4). Hence, R ,  is a semi- 
realization of R ,  (see Theorem 6.1 and  the paragraph 
following it). In addition, R ,  satisfies the proper-indepen- 
dence condition of Theorem 2.5 with  respect to the block 
decomposition since  the  block-row  spaces of R ,  and of R 
are the same.  Hence, R ,  can be decoupled by an admissible 
static feedback ( F , G )  and, according to Proposition 2.7, 
such that the resulting  decoupled transfer matrix M = V(Q 
+ N ) - ' G  is stable. (Here N is a polynomial matrix such 
that N Q - '  is strictly proper.) It follows that ( Q  + N ) -  ' = 

V-'MG-' is stable so that R ,  f,, is stable. Since R,, = 

P( Q + N ) -  'G = *( Q + N ) -  'G, it follows that ( F ,   G )  also 
decouples R. 

0 
Remark 6.6: The points z, at which the matrix V(z,)  in 

the foregoing  proof is singular are the fixed  poles of the 
decoupled  system.  Except for these, the poles can be  placed 
arbitrarily. 

If the original system is stable, the stable independence 
of the row  spaces Ti, - * ,Tk is  equivalent to the stable 
independence of the spaces 5 ,, . . , S, of Theorem  2.9. This 
follows from the fact that the map Si 3 T j :  u * uQ pre- 
serves the stable independence condition, so that Theorem 
2.9  follows from Theorem 6.5. If the original system  is not 
stable, it  may happen that S,, . . ,S, are stably indepen- 
dent,  but TI, e ,  9, are not. 

We conclude th s  section  with  some remarks on nonin- 
jective systems.  Essentially, the situation parallels that of 
Section V; that is, the obvious  analog of Theorem 2.9 
constitutes a sufficient condition but not a necessary  one. 
Also, the analog of Theorem 5.2 also holds; that is: if a 
matrix K exists such that  rank RK = rank R and such that 
the row spaces S, K ,  e ,  5, K are stably  independent,  then  the 
system can  be  decoupled by an admissible state  feedback such 
that  the resulting I / S  map  is  stable. The proof is similar to 
that of Theorem 5.2 and is omitted. 

VII. REMARKS ON COMPENSATOR CONSTRUCTIONS 

Explicit constructive tests for the existence of decoupling 
compensators by either admissible precompensation or 
feedback, as well as the explicit construction procedures of 
a desired compensator follow from the proofs. The present 
section  is  devoted to some  more detailed elaboration. 

We start with  decoupling by precompensation. The basic 
construction follows  from the proof of Theorem  2.1  (see 
Section 111) as follows. 

Step I :  Construct rational matrices y ( z )  and R j ( z )  for 
i = 1;. . ,k such that R ,  = y[R;,O]' with nonsingular and 
R , right invertible. This can be accomplished by elemen- 
tary linear algebraic operations in ?X ( z ) .  

Step 2: Check  whether the matrix R : = [ & ;  . . ,Ri]' has 
full rank. If not, admissible decoupling is  impossible. 
Otherwise go to the following. 

Step 3: Compute a right  inverse G ( z )  of R. 
Step 4: Multiply G ( z )  by a suitable (scalar) rational 

function r ( z )  yielding a stable, causal, admissible, decou- 
pling prewmpensator. 

If the origin  system  is not stable, then stability of the 
precompensator and of the decoupled  system  is not suffi- 
cient and one has to apply a stabilizing feedback  com- 
pensator before computing a decoupling precompensator. 

We turn now to the construction of admissible  decou- 
pling feedback compensators for injective transfer matrices. 
This construction consists of the following  two essential 
stages: 1)  the construction of a bicausal  decoupling wm- 
pensator L such that RL is dewupled  and such that 
L- ' = PR for  some  polynomial matrix P;  2) the construc- 
tion of a feedback pair ( F ,  G )  such that L = L ,  G.  

Basically the constructions are contained in the proofs of 
Section  IV. 

I )  We appeal to Lemma 4.2: There, a decomposition 
PR = [ M', 01' is constructed such that P is a nonsingular 
polynomial  matrix and M is causal and has a causal right 
inverse. The actual construction of such matrices rests on 
the modified Hermite form, for which an explicit construc- 
tion is  easily  given  (see [ 11). Thus, we proceed through the 
following steps. 

Step I :  Construct matrices Pi and Mi such that P,R, = 
[ M,', 01'. 

Step 2: Check  whether the matrix M :  = [Mi, .  . . ,Mi]' is 
bicausal. This is  easily done by checking the nonsingularity 
of M,, the zeroth order coefficient matrix in the expansion 
of M in  powers of z-I. In case M is not bicausal  (i.e., M ,  is 
singular) then admissible  feedback decoupling is  impossi- 
ble.  Otherwise  go to the following. 

Step 3: Let L : = M -  I .  L is the desired bicausal pre- 
compensator. Since for the construction of the feedback 
compensator ( F ,  G )  we need L-' = M ,  the matrix M need 
not actually  be inverted. 

2) Once M is  given, the pair F and G are to be  de- 
termined from the expression 

M = G-, (  I - FR,). 

Since R ,  is strictly causal, it follows  immediately that 
G = Mo-', and hence F needs to be determined from the 
equation 

F R , = W : = I - G M = I - M ; ' M .  (7.1) 

The existence of a solution to  this equation follows from 
the theory. An explicit calculation of F depends on the 
representation of R,. We shall  discuss  two  cases. For 
simplicity we assume that R ,  is  reachable. 

Case 1: The matrix R ,  is given  as R ,  = ( z I  - A)- 'B  for 
given  matrices A and B. Expanding both sides of (7.4) in 
powers of z- '  and equating coefficients of equal powers 
yields 

F ( B , A B , - . . ) = ( W , , W , , - - . )  

where W ( z )  = W , z - '  + W,zp2 + . . . By reachability, F is 



832 IEEE TMNSACTIONS ON AUTOMATIC CONTROL, VOL. AC-28, NO. 8. AUGUST 1983 

uniquely determined from [6] M. Heymann, “Structure and realization problems in the theory of 
dynanucal systems” (Lecture Notes. International Center for Mech- 
anical Sciences). Italy: Udine. 1972; also (CISM Courses and 
Lectures 204). New York: Springer-Verlag, 1975. 

[7] T. G. Koussiouris, “A frequency domain  approach to the block 
where n is the dimension of A. decoupling problem.” Inr. J. Contr., vol.  29, pp. 991-1010,  1979. [SI A. S. Morse and W. M. Wonham, “Status of noninteractingcontrol,” 

IEEE Trans. Auton~at. Conrr., vol. AC-16. pp. 568-581,  1971. 
tion R,  = SQ-I. Then (7.4) can be rewritten as [9] L. M. Silveman and H. J. Payne. “Input-output structure of linear systems with applications to the decoupling problem,” SIAM J. 

Contr., vol. 2. pp. 199-233,  1971. 
[lo] W .  A. Wolovich, Linear Mulriuariable Sysrems. New, York: 

The theory  implies that N is a polynomial matrix and F [ 1 I ]  !V. M. Wonham and A. S. Morse. “Decoupl$g and pole assignment 
Springer-Verlag. 1974. 

can  be determined  by equating coefficients of equal powers In h e a r  systems. A geometnc approach, S I A M  J. Contr., pp. 

of z on both sides. If S and Q are given  in  canonical form, 
i.e., Q in column  reduced form and S as in [6, Sect. 61, or in 
[ 10, eq. (4.3.2)], then the solution of the equation FS = N 
can be found by  inspection. Matheus L. J. Hams was born in Helden, The 

We conclude the section  with  some  remarks on  stable 
Netherlands, on April 27,  1940. He received the 
degree in mathematical engineering and the Ph.D. 

decoupling,  i.e., the situation where one wants to ensure degree from the  Department of Mathematics, 
the stability of the I/S map of the decoupled  system.  We Eindhoven University of Technology. Eindhoven, 

assume that a polynomial fraction representation R = PQ- I 
The Netherlands, in 1966 and 1970. respectively. 

Since 1971 he has been a Professor in the 
where P = CR + DQ is given,  corresponding to the given Department of Mathematics, Eindhoven Univer- 
realization.  According to Lemma 6.4, we begin  by con- sity of Technology. His research interest involves 

structing a polynomial  factorization P, = C:[ v, 01’ where linear system theory. in particular. algebraic sys- 

l,-’ exists and is  causal and where  is  right unimodular, 
tem theory. 

i.e., has a right  polynomial  inverse. Factoring out in 
each of the row  blocks  as  described in Section VI yields a 
new transfer matrix R ,  = VQ-’, which can still be decou- Michael Heymann was born  in Cologne, 
pled. To this transfer matrix we apply the decoupling > Gemany, on July 24,  1936. He received the B.Sc. 
procedure described  earlier,  where  when  applying  Lemma . (cum laude) and M.Sc. degrees in chemical en- 

4.2 we choose P, such that PC ‘ ( z ) [  I,O]’ has  only  poles  in 
gineering from the Technion-Israel Institute of 
Technology, Haifa, Israel, in 1960 and 1962, 

?-. We point out that the application of the previous respectively, and the Ph.D. degree from the Uni- 
algorithm to R ,  is  simplified  somewhat through the fact versity of Oklahoma, Korman, in 1965. 
that all the block  rows  have  full  row rank. 

During 1965-1966 he was a Visiting Assistant 
Professor of Chemical Engineering at the Univer- 

F(B,AB,...,A“-~B)=(W,,W,,...,W,) 

Case 2: The matrix R ,  is  given  by a coprime factoriza- 

FT= N :  = WQ. 

1-18.  1970. 

Dr. Hautus is member of SIAM. 
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